Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xun Li,^a* Xue-Gui Cui,^a Xin-Gang Liu^b and Xiao-Fang Li^b

^aSchool of Chemistry and Chemical Engineering, Shandong University, Shandong 250100, People's Republic of China, and ^bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: tjulx2003@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.015 Å R factor = 0.057 wR factor = 0.194 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Bis(ferrocenyl methyl ketone thiosemicarbazone- $\kappa^2 N$,S)zinc tetrahydrofuran hemisolvate

The title complex, $[ZnFe_2(C_5H_5)_2(C_8H_9N_3S)_2] \cdot 0.5C_4H_8O$, is a Schiff base chelate. It consists of one zinc cation and two ligand anions, the cation being tetrahedrally coordinated by one N atom and one S atom from each ligands, thus forming two orthogonal five-membered chelate rings related to each other by the twofold rotation axis passing through Zn.

Received 22 December 2003 Accepted 13 January 2004 Online 14 February 2004

Comment

Complexes of transition metals with some Schiff bases containing S and N atoms have been used widely (Basavantappa & Patil, 1986) as anticancer drugs, preservatives and antibacterial agents. In particular, the biochemical behaviour and function of zinc have a very close bearing on health (Wang & Xu, 1992). The ferrocene group can also serve as an ultraviolet protecting agent (Basavantappa & Patil, 1986) In the title complex, (I), the molecular structure contains two symmetric five-membered chelate, related to each other by the twofold rotation axis passing through Zn. Zn is tetrahedrally coordinated by one N atom and one S atom from each ligand. As shown by thermogravimetric and differential thermal analysis, the thermostability of the complex is much greater than that of the ligand itself.

Experimental

Acetylferrocene was prepared by a modification of the method of Van Ryswyk & Van Hecke (1991) (m.p. 354 K; 91% yield). For the preparation of monoacetylferrocene thiosemicarbazone (ligand), (II), to a stirred solution of acetylferrocene (2.3 g, 10 mmol) in anhydrous ethanol (50 ml), thiosemicarbazide(0.91 g, 10 mmol) in distilled water (40 ml) was added dropwise; to this mixture was added acetic acid (2 ml), and the resulting solution was refluxed at 323 K for 2 h, cooled to room temperature and filtered. The precipitate was washed with anhydrous ethanol and dried in vacuo (m.p. 425-429K). For the preparation of (I), compound (II) (0.304 g, 1 mmol) in 50% ethanol solution (25 ml) was refluxed for about 30 min. A solution of Zn(CH₃COO)₂·2H₂O (0.11 g, 0.5 mmol) in 50% ethanol solution (25 ml) was added to the refluxing solution over a period of about 30 min, and the mixture was refluxed for another 2 h before being cooled. The precipitate was filtered off and dried in vacuo, yielding red crystals. Single crystals suitable for X-ray analysis were obtained by evaporation of a tetrahydrofuran solution slowly over a period of 5 d.

Acta Cryst. (2004). E60, m307–m308 DOI: 10.1107/S1600536804000923 Li, Cui, Liu and Li • [ZnFe₂(C₅H₅)₂(C₈H₉N₃S)₂]·0.5C₄H₈O **m307**

metal-organic papers

Figure 1

The molecular structure of (I), with displacement ellipsoids at the 30% probability level. Hydrogen atoms have been omitted, as has the solvent molecule.[Symmetry code: (A) $x - y + \frac{1}{3}, \frac{2}{3} - y, \frac{1}{6} - z.$]

Figure 2

The crystal structure of (I), viewed along the c axis. The THF molecule has been omitted for clarity.

Crystal data

```
 \begin{bmatrix} ZnFe_2(C_5H_5)_2(C_8H_9N_3S)_2 \end{bmatrix}^{-} & D_x = 1.465 \text{ Mg m}^{-3} \\ 0.5C_4H_8O & Mo \ K\alpha \text{ radiation} \\ M_r = 701.79 & \text{Cell parameters from 25 reflections} \\ Trigonal, \ R\overline{3}c & \theta = 1.0-25.0^{\circ} \\ a = 28.912 \ (17) \ \text{\AA} & \mu = 1.81 \text{ mm}^{-1} \\ c = 19.784 \ (17) \ \text{\AA} & T = 293 \ (2) \text{ orange} \\ V = 14322 \ (17) \ \text{\AA}^3 & 0.30 \times 0.25 \times 0.20 \text{ mm} \\ Z = 18 \end{bmatrix}
```

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{min} = 0.613, T_{max} = 0.714$ 19 336 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.194$ S = 0.962823 reflections 192 parameters $R_{int} = 0.133$ $\theta_{max} = 25.0^{\circ}$ $h = -29 \rightarrow 34$ $k = -34 \rightarrow 33$ $l = -17 \rightarrow 23$

2823 independent reflections

1496 reflections with $I > 2\sigma(I)$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.084P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.21 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.40 \text{ e} \text{ Å}^{-3}$

H atoms were positioned geometrically, with C–H = 0.93–0.98 Å and N–H = 0.90 Å, and treated using a riding model, with $U_{\rm iso}({\rm H})$ = $1.2U_{\rm eq}$ (carrier atom). The value of $R_{\rm int}$ is high due to the poor quality of the crystal. The maximum residual density peak is 0.86 Å from atom C14.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

Basavantappa, B. M. & Patil, S. R. (1986). Synth. React. Inorg. Met. Org. Chem. 16, 201–211.

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Van Ryswyk, H & Van Hecke, G. R.(1991). J. Chem. Educ. 68, 878-882.

Wang, K. & Xu, H.-B. (1992). Trace Elements Life Sci. 2, 114.